

FROM GUNPOWDER TO CODE: REIMAGINING FIREARM EVIDENCE THROUGH ARTIFICIAL INTELLIGENCE

Aman Sonkar¹

Abstract: The incorporation of “Artificial Intelligence (AI) and Machine Learning (ML)” into forensic science represents a new era towards the processing of firearm evidence. Previously, firearm forensics was predominantly based on expert opinion, visual comparisons, and other subjective methods that were further marred by questions of reliability and admissibility. AI and ML provide a data-driven and objective methods that can be used to speed up and to increase the accuracy and consistency of ballistic and tool-marks analyses. This paper explores the scientific basis, practical applications and legal frameworks within which AI and ML technologies are being increasingly-weaved throughout firearm evidence analysis. The main focus is to determine the ways in which these technologies are changing the course of forensic investigations, court decisions, and ways that traditional standards of evidence are being challenged. Technologically as it reviews, in a multi-disciplinary manner both, landmark judicial decisions, and current ethical debates. The complementary examination of Indian and international legal context enables a deeper understanding. The results highlight potential improvements in forensic accuracy from the use of AI and ML while discussing issues of explainability, bias, and the legal admissibility of such tools. While they are cautiously optimistic, courts require more clearness and rigorous validation of AI assisted exhibits. The paper ends with recommendations for necessary technology policy—regulatory standards that legally enforce commitments to equity, an interdisciplinary approach between the social and engineering sciences to study what happens with new technologies, and ethical theory development and application to guide the use of technologies to elevate policing and justice rather than degrade.

Keywords: Forensic Ballistics, Artificial Intelligence in Forensics, Machine Learning Applications, Firearm Evidence Analysis, Legal Admissibility of AI Evidence, Ethical Challenges in Forensic AI, Judicial Response to AI in Evidence.

INTRODUCTION

Gun evidence inspection, a key aspect of forensic ballistics, has been the keystone of criminal gun use detection for many decades. Forensic ballistics (crime) this forensics usually comes from the study of bullets, cartridge cases, and gunshot residues to match a suspect to a weapon and ultimately a crime scene. Traditional approaches have been based on analyzing ballistic imperfections in projectiles and casings by experts, generally using comparative microscopy techniques that were first developed in the early 20th century.¹ Although these methods have been refined by the forensic community over the decades, they still struggle with the issues of subjective determination, error rates, and reproducibility. The analysis of firearm evidence is still mostly

manual and visual, with expertise and experience playing crucial roles. In the second part, experts look at microscopic striations, breech face impressions and firing pin marks and use them to determine if they look similar or match.² While such techniques are now commonplace, studies have found disturbing margins of error and a lack of standardized protocols leading to an unwillingness among jurisdictions to accept or give weight to firearm evidence.³ The role of cognitive biases, confirmation biases, and absence of blind proficiency testing has been criticized for biasing forensic conclusions in ways that can gravely influence criminal trials.⁴ To overcome the challenges posed by the limitations of other traditional forensic procedures, “Artificial Intelligence (AI) and Machine Learning (ML)”

¹ Assistant Professor at Motherhood University, Roorkee, Uttarakhand.

¹ RC Goodlin, ‘An Introduction to Forensic Ballistics’ (Journal of Forensic Sciences 2010) 55(1) 10.

² Nicholas Petracca and others, ‘Firearm and Toolmark Identification: A Review of the Literature’ (2012) 62(5) Forensic Science International 70.

³ Committee on Identifying the Needs of the Forensic Sciences Community, *Strengthening Forensic Science in the United States: A Path Forward* (National Academies Press 2009) 150–155.

⁴ Itiel E Dror and Dan Simon, ‘Cognitive and Human Factors in Expert Decision Making: Six Fallacies and the Eight Sources of Bias’ (2021) 66 Journal of Forensic Sciences 149.

technologies are increasingly playing crucial roles in forensic science. The objectivity and consistency of forensic investigations can be enhanced through the use of these tools, which automate finding patterns, wire-shark pattern comparison and statistical analysis of bullet striations. AI models such as neural networks and deep learning algorithms have achieved similar levels of success in the classification of tool-marks and matching of bullets with a high degree of accuracy resulting in better performance when compared to traditional methods that involve humans.⁵ Systems like the “National Integrated Ballistic Information Network (NIBIN)” and Evofinder have recently begun to incorporate artificial intelligence algorithms, allowing the creation of searchable ballistic databases for law enforcement, vastly accelerating investigations⁶ Systems such as the “National Integrated Ballistic Information Network (NIBIN)” and Evofinder now integrate AI algorithms to create searchable ballistic databases, significantly expediting investigations.⁷

However, while the articles written thus far show promise for the role of AI and ML in certain processes associated with forensic firearm examination, controversy remains surrounding their integration into the analysis process. Courts have raised alarms over the “black box nature of some AI systems” and challenged the transparency, explainability and accountability of machine-generated outcomes.⁸ Even worse, the law has been slow to react, struggling with how to fit the decades-old evidentiary standards with the fact-finder, like the “Daubert and Frye tests”, for AI-based forensic evidence.

The current study is motivated by the lack of analysis of how methodologies used in AI and ML might affect not only the accuracy of firearm evidence but also its admissibility from either a scientific or legal perspective. We will elaborate in The core research questions of this study were: How AI and ML technologies improved the methods and precision of firearm evidence analysis. What are the legal and ethical challenges posed by the use of AI-based forensic evidence? How have courts in different

jurisdictions responded to the admissibility of AI-assisted firearm evidence?

This paper critically reviews the evolution of firearm forensic analysis technology, discusses relevant court decisions, ethical and regulatory challenges, and proposes recommendations to improve the reliability and admissibility of firearm evidence generated by AI systems.

The remainder of the paper is organized as: Section 2 reviews the science of the comparison of firearm evidence to a database and the necessity for technology. Section 3 reviews the incorporation of AI and ML into firearms forensics, with specific technologies and case studies. Section 4 addresses the admissibility of evidence law-wise; as such, it pays attention, among other things, to how judges have reacted, and to case law. Section 5 assesses the ethical and regulatory issues. Section 6 Future Perspectives and Challenges are presented in, while Section 7 concludes, includes recommendations.

SCIENTIFIC FOUNDATIONS OF FIREARM EVIDENCE ANALYSIS

Firearms and ballistic-related evidence has been viewed for many decades as an invaluable tool in the arsenal of forensic examinations to assist criminal investigations. Bullets, cartridge cases, gunshot residue (GSR) and other ballistic materials fall under the category of firearm evidence, Every firearm creates its own marks on the bullets and casings at a microscopic level every time it fires, based on the imperfections in the barrel, breech face, extractor and firing pin that are present during the manufacturing of the weapon. The presence of these unique features forms the basis of ballistic identification.⁹ Ballistics is the science of mechanics that deals with the detailed motion, behaviour, and effects of projectiles, and can be further split into three branches internal firing or launch, external: travel from the muzzle to the target and terminal: effects on or interaction with the target. The science of ballistics can be broken down into three areas: internal ballistics, which deals with the events occurring inside the firearm when a shot is fired, “external ballistics, which deals with the bullet in flight,

⁵ Ahmed A Abdelwahab and others, ‘Applications of Machine Learning in Forensic Ballistics’ (2020) 48 *Forensic Science International: Synergy* 102312.

⁶ Yicheng Wang and others, ‘Deep Learning-Based Methods for Ballistic Evidence Identification’ (2021) 129 *Forensic Science International* 110172.

⁷ Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), ‘National Integrated Ballistic Information Network (NIBIN) Fact Sheet’ (2022)

<https://www.atf.gov/firearms/national-integrated-ballistic-information-network-nibin>

⁸ Cary Coglianese and David Lehr, ‘Regulating by Robot: Administrative Decision Making in the Machine-Learning Era’ (2017) 105 *Georgetown Law Journal* 1147.

⁹ Nicholas Petracca and others, ‘Firearm and Toolmark Identification: A Review of the Literature’ (2012) 62(5) *Forensic Science International* 70.

and terminal ballistics, which deals with the bullet after contact with the target".¹⁰ Forensic analyses are mainly focused on internal ballistics and tool-marks.

Instead, toolmarks, which are microscopic impressions created by firearms, are left on bullets or cartridge cases. These features are divided into class characteristics (features common to a class of firearms, e.g. calibre, number of lands and grooves) and individual characteristics (features unique to a specific firearm, e.g. due to a unique combination of manufacturing processes or wear).¹¹ Analysis of gunshot residue (GSR) is another important aspect of firearm evidence, and is the process of detecting microscopic particles that are expelled during the discharge of a firearm. "Analytical methods such as scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX) are used for the detection of GSR characteristic particles inclusive of lead, barium, and antimony".¹²

Traditional methods used for firearm evidence comparative analysis have utilized manual techniques, with comparison microscopy pioneered by Goddard in the 1920s.¹³ In a comparison microscope, two objects are viewed at once, with one object usually being a bullet that has been test-fired and the other an unspecified bullet from a crime scene, so that tool-marks on both can be compared. Other imaging techniques such as 3D surface scanning and digital microscopy have further improved the accuracy of ballistic comparisons.¹⁴

Even though the technology has improved, the process of conducting comparative analysis manually is subjective. In this context, experts tend to rely heavily on personal experience and visual assessment without quantitative measures to support their conclusions. Research has shown that even trained examiners may come to different conclusions when viewing the same evidence, raising

¹⁰ Richard Saferstein, *Criminalistics: An Introduction to Forensic Science* (11th edn, Pearson 2014) 270–275.

¹¹ RC Goodlin, 'An Introduction to Forensic Ballistics' (*Journal of Forensic Sciences* 2010) 55(1) 10.

¹² T Basu and A Biswas, 'Current Trends in Gunshot Residue Analysis' (2019) 30(2) *Journal of Forensic Sciences and Criminal Investigation* 556–562.

¹³ David R Fisher, 'Calvin Goddard and the Evolution of Ballistics Comparison' (1998) 48(3) *Journal of Forensic Identification* 257.

¹⁴ Jie Tong and others, '3D Imaging in Firearm Forensics: Principles and Applications' (2020) 6 *Forensic Imaging* 200–207.

¹⁵ Sarah L Bridge, 'Interexaminer Variation in Firearms Identification' (2017) 12(1) *Journal of Forensic Sciences* 45.

questions about error rates and inter-examiner variability.¹⁵ The importance of this issue has been widely recognized since a landmark report from the "National Research Council (NRC) in 2009", which criticized the lack of objective standards in forensic ballistics and the lack of rigorous scientific validation.¹⁶

A. Manual gun exam is beset with a number of major challenges:

Subjectivity Expert insights can be clouded by cognitive biases, confirmation biases, and unconscious pressures, especially when experts know the aspects of the case.¹⁷ Error Rates, Although advocates tout very high matching success rates, empirical studies have demonstrated significant false positive and false negative rates in bullet and cartridge case matching.¹⁸ No Standards, Laboratories have different procedures, making it difficult to set global best practices.

These problems highlight the need for methods that use objective, scientifically-supported data in the analysis of evidence related to firearms. AI and ML are emerging technologies that deliver solutions as they automate pattern identification, quantify similarities, and attempt to eliminate human bias. By imaging large collections of ballistics images, we can train an AI model to find statistically significant matches resulting in a transparent and reproducible process that allows for independent validation. The move towards more empirical methodology is important, not only to improve the scientific rigor behind firearm forensics, but also to improve the strength and admissibility of ballistic evidence in court.¹⁹

INTEGRATION OF AI AND ML IN FIREARM EVIDENCE

Naturally, the incorporation of "Artificial Intelligence (AI) and Machine Learning (ML)" is also revolutionizing traditional forensic

¹⁶ Committee on Identifying the Needs of the Forensic Sciences Community, *Strengthening Forensic Science in the United States: A Path Forward* (National Academies Press 2009) 154–165.

¹⁷ Itiel E Dror and Dan Simon, 'Cognitive and Human Factors in Expert Decision Making: Six Fallacies and the Eight Sources of Bias' (2021) 66 *Journal of Forensic Sciences* 149.

¹⁸ Daniel Liel and others, 'Error Rates in Firearm Examination: A Systematic Review' (2021) 8(2) *Forensic Science International: Synergy* 100182.

¹⁹ Yicheng Wang and others, 'Deep Learning-Based Methods for Ballistic Evidence Identification' (2021) 129 *Forensic Science International* 110172.

sciences as well, including the analysis of firearm evidence. Automation of complicated decision-making, identification of very complex and interdependent patterns and the provision of objective analyses, ideals that aim towards strengthen the scientific foundation of firearm forensics, can be provided by AI and ML.

In a forensic context, Artificial Intelligence is applied as a computing strategy that is quite broad in nature and permits parting computational systems to finish errands structurally related to human thinking, for example, recognizable pattern, sorting, and decision-making.²⁰ A subfield of AI, Machine Learning allows systems to learn from data inputs without having to program every possible scenario. Over time and through continuous training on larger datasets of ballistic images and tool-marks, the predictive performance of ML algorithms improves and the identification power is fine-tuned. Firearm ID: These technologies have the potential to augment or even replace the tedious manual search for features that are invisible to the naked eye.²¹

In firearm evidence analysis, a number of techniques have been applied: Image Recognition, The deep learning models, namely Convolutional Neural Networks (CNNs), have been used to detect and match toolmarks and ballistic features in an automatic way. By enabling Multi-Level Feature Extraction on the Bullet and Cartridge Images, CNN is helpful in improving the matching up process between bullet and cartridge images, improving the overall accuracy of the processes.²² Neural Networks, These have also been used in modeling other forms of neural networks (beyond CNNs) including feed forward and recurrent to model complex relationships between ballistic evidence variables as well as between matching outcomes.²³ Pattern Recognition and Clustering “*Unsupervised learning methods such as clustering algorithms (k-means, DBSCAN)*” are valuable for organizing salient ballistic features into clusters, which is important when working with datasets

²⁰ Stuart Russell and Peter Norvig, *Artificial Intelligence: A Modern Approach* (4th edn, Pearson 2020) 23.

²¹ Kevin P Murphy, *Machine Learning: A Probabilistic Perspective* (MIT Press 2012) 1–3.

²² Jie Tong and others, ‘Deep Learning Approaches for Firearm Ballistic Evidence’ (2022) 15(1) *Forensic Science International: Digital Investigation* 300002

²³ Ian Goodfellow, Yoshua Bengio and Aaron Courville, *Deep Learning* (MIT Press 2016) 156–158.

²⁴ Trevor Hastie, Robert Tibshirani and Jerome Friedman, *The Elements of Statistical Learning* (2nd edn, Springer 2009) 459.

containing many shots where the shots are not labeled prior to analysis.²⁴ Role of AI in Bullet and Cartridge Similarity Scoring and Ranking AI Models score the similarity of possible bullet and cartridge comparisons and provide a ranked list of candidate comparisons for human evaluation. This helps to reduce false positives and strengthen evidential integrity.²⁵

This AI and ML paradigm has been operationalized into actual systems and software platforms within the firearm forensics domain by the notable systems: “*National Integrated Ballistic Information Network (NIBIN)*”: “*A system run by the US Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF)*” that uses automated ballistic imaging systems to capture and compare ballistic evidence. It allows for quick comparisons of firearm evidence over large jurisdictions to help connect crimes.²⁶ EVOfinder: A fully automatic 3D imaging and comparison system that can provide accurate 3D models of bullets and cartridge cases by SCANBII (Russia). Its matching algorithms are database driven, using a combination of traditional pattern matching and similarity scoring powered by AI.²⁷ “*Integrated Ballistics Identification System (IBIS)*”: IBIS is a several different types of system that has been developed by Ultra Electronics Forensic Technology and adopted widely among law enforcement agencies around the world. High-resolution imaging, 3D surface analysis, and AI-powered candidate generation are about to make this task more efficient for matching ballistic evidence.²⁸

All these systems aim to improve upon conventional comparative microscopy with high-throughput, reproducible, and scalable ballistic comparisons.

The importance of AI and ML in firearm forensic science has been highlighted through case studies. One of the most prominent examples is the study performed by Kase et al., in which deep learning algorithms were trained with 3D topography data of fired cartridge cases. This study showed that AI models could correctly match (or not match) the cartridge

²⁵ Jun Zhang and others, ‘Similarity Scoring Algorithms for Ballistic Evidence Analysis’ (2020) 312 *Forensic Science International* 110330.

²⁶ Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), ‘*National Integrated Ballistic Information Network (NIBIN)*’ <https://www.atf.gov/firearms/national-integrated-ballistic-information-network-nibin>

²⁷ SCANBII, ‘*EVOfinder Ballistic Identification System*’ <https://www.scanbii.com/evofinder>

²⁸ Ultra Electronics Forensic Technology, ‘*Integrated Ballistics Identification System (IBIS)*’ <https://ultra-forensictechnology.com/solutions/ibis>

cases with consistency higher than that of manual examiners, with top-ranked match rates above 95%.²⁹ Another study by Song et al. published a virtual matching system using 3D surface topography images for firearm examination as well as ML techniques. This suggests that computational methods for comparison are faster and more accurate than manual comparisons, especially with large datasets.³⁰ Similarly, Tong et al. Bullet Matching Using CNN Approach Vishnu Prathyusha M et al.' introduced CNN-based methods to differentiate bullets Vishnu Prathyusha M et al.'s research on CNN-based approaches of bullet identification proved that AI models can identify matching pairs of bullets with very low false positive rates, thus aiding forensic reliability.

A number of key takeaways from the performance analysis of AI/ML systems compared with traditional manual examinations are, Reliability Artificial intelligence can detect objects as small as tiny details and can search microscopic patterns that are often missed by human examiners. Matching accuracies well in excess of 95% have been achieved in at least one study for cartridge case comparisons using deep learning models. Trustworthiness The reliance on human cognitive biases is reduced, which creates more repeatable and reproducible results using AI-powered methods. Systems such as IBIS have played a critical role in cold cases that can not be solved using traditional methods.³¹ Thousands of images are compared via AI systems in hours, while by hand the process will take weeks. For example, in high crime areas or mass shootings, time is of the essence and intelligence needs to be gathered quickly.³² However, the AI/ML technologies present unique challenges. Important issues still under concern, is research are related to the quality of datasets, lack of transparency and justification of algorithms, explainability of decisions (for instance, in court proceedings), and risk of overfitting. Moreover, the use of AI should follow rigorous validation processes so that the outputs confirm to evidence standards for court

admissibility.³³ AI and ML in firearm forensics represents an evolutionary change that makes firearm examinations more objective faster and more based on sound science. Despite some unforeseen challenges, the advantages of these technologies in terms of accuracy, reliability, and speed, continue to demonstrate great promise towards revolutionizing the field of forensic ballistics.

LEGAL ADMISSIBILITY AND JUDICIAL RECEPTION

With the integration of these AI and ML tools into the analysis of firearm evidence, courts are faced with the new challenges of whether to legally admit these tools into the courtroom, what evidentiary weight is permitted to these tools if they are admissible and whether the tool meets Judicial Reliability. The involvement of AI/ML in forensic science raises issues for traditional legal frameworks that address testimony by human experts, and has led to calls to reconsider legal standards for admissibility worldwide.

A. Admissibility Standards Under The Law

In the U.S., the two main paradigmatic tests for experts and scientific evidence have historically been Frye and Daubert. "*The Frye standard (from Frye v United States)*"³⁴ mandates that scientific technique must be generally accepted in the scientific community pertinent to the specific subject of the testimony. This, in fact, was a lot of what was replaced at the federal level with the "*Daubert standard (Daubert v Merrell Dow Pharmaceuticals)*"³⁵, where the four basic causation elements for admissibility are testability, peer review, error rates, and general acceptance, — "*Under Federal Rule of Evidence 702, judges serve as "gatekeepers" to ensure that any expert testimony is relevant and reliable*".³⁶

The evidentiary standard in India is defined by the Indian Evidence Act, 1872 and the evidence acts of the states based on it, which in addition to general principles specifies expert opinion for matters in science and technology in sections 45 to 51. However, when it comes to

²⁹ Kase D and others, 'Automated Matching of Cartridge Cases Using 3D Surface Topography and Deep Learning' (2021) 125 Forensic Science International 110175.

³⁰ J Song and others, 'Automated Firearm Evidence Identification Using Machine Learning Techniques' (2020) 122 Forensic Science International 250–259.

³¹ National Institute of Justice, 'Ballistic Imaging and the Use of IBIS' (2022) <https://nij.ojp.gov/library/publications/ballistic-imaging-and-use-ibis>

³² Bureau of Alcohol, Tobacco, Firearms and Explosives (n 7).

³³ Cynthia Rudin, 'Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead' (2019) 1 Nature Machine Intelligence 206.

³⁴ *Frye v United States* 293 F 1013 (DC Cir 1923).

³⁵ *Daubert v Merrell Dow Pharmaceuticals* 509 US 579 (1993).

³⁶ Federal Rules of Evidence 702.

the analysis generated by AI, the Act is mute, and the courts have interpreted its provisions in light of narrow principles of natural justice, procedural fairness and relevance.³⁷ “State of Himachal Pradesh v Jai Lal, (1999) 7 SCC 136 at p.150”.³⁸

Cautiousness has been an approach toward new, untested scientific evidence by courts in the United Kingdom. While there is not a statutory equivalent of Daubert, a test of reliability is recognized by case law in the UK, with a focus on the soundness of the underlying science, as well as whether the proposed expert is sufficiently qualified.³⁹ “Law Commission of England and Wales, *Expert Evidence in Crime Trials: Fifteenth Report, 2009*”.⁴⁰

B. Judicial attitudes towards AI-generated evidence

Courts across the globe are starting to wrestle with AI-generated evidence, but issues such as transparency, explanatory ability, and accountability are now resurfacing among judges. They primarily work as black boxes, especially in the case of deep learning AI, which means that it generates its output, but it is difficult, if not impossible to trace how it arrived at that particular conclusion. This opacity makes it ambiguous whether such evidence can pass the legal requirements for explainability and cross-examination.

“State v Loomis” is a case in which the Wisconsin Supreme Court dealt with a specific type of “artificial intelligence risk assessment”, namely “COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)”. Although also permitting its use, the court cautioned that such algorithms were proprietary and not always transparent and readily available, and therefore should not be relied upon too heavily.⁴¹ This illustrates the judgement’s discomfort by approving AI-based determinations when the reasoning for the rationale undergirding the determination is an unexplained black box.

However, AI specific-forensic tools till date have not seen extensive court testing in India, albeit, in “Kusum Sharma v Batra Hospital”, the court observed that technology can aid in making judicial processes a lot more efficient

and that data-based systems can be relied upon to complement human analysis, but not completely replaced.⁴²

C. Landmark Decisions Related to Artificial Intelligence as Forensic Evidence

“People v Chubbs” Case Idea: Automated firearms matching using automated ballistics studies (IBIS data) Country: United States Court: California court Date: 2004 The defence argued that the evidence should not be admitted because it lacked comprehensive peer review and relied upon results obtained by a machine that cannot be cross-examined. While the court only accepted it as evidence, it stressed the need for human expert validation.⁴³ United Kingdom The Court of Appeal considered in “R v T” the boundaries of statistical evidence based on probability. While the judgment more generally specified that courts should treat novel methodologies with caution, it was at least partially premised on the fact that the methodology was based on algorithmic or probabilistic models without firm statistical support, which was also not strictly AI.⁴⁴

When employed in evidence and court procedures, forensic science plays a highly critical role in the realm of criminal justice. It is not directly related to AI, but it begins to open up courts to explore testing AI tools on similar grounds.⁴⁵

D. Reliability, Explainability, and Opinion of the Expert

Admissibility is related to about reliability. To enter court, AI gun evidence must show low error rates, validated algorithms, and repeatable results. However, numerous AI tools are trained on closed datasets, and their performance may differ starkly from new, real-world contexts.⁴⁶

In cross examination and judicial reasoning, explaining the ability, or the ability of a system to explain its decision, becomes critical. Black-box AI systems may not be able to produce logic that can be understood even if they are actually better than human experts, who can justify their conclusions rationally. At the same time this undermines “the right to a fair trial” of the accused, especially “the right to confront and cross examine the evidence against him”.⁴⁷

³⁷ Indian Evidence Act 1872, ss 45–51.

³⁸ State of Himachal Pradesh v Jai Lal (1999) 7 SCC 280.

³⁹ R v Dlugosz [2013] EWCA Crim 2.

⁴⁰ Law Commission, ‘Expert Evidence in Criminal Trials’ (Law Com No 325, 2011) paras 1.16–1.31.

⁴¹ State v Loomis 881 NW 2d 749 (Wis 2016).

⁴² Kusum Sharma v Batra Hospital 2010 SCC OnLine Del 1612.

⁴³ People v Chubbs (2015) Cal App 4th 450

⁴⁴ R v T [2010] EWCA Crim 2439.

⁴⁵ Narayan Chetanram Chaudhary v State of Maharashtra (2000) 8 SCC 457.

⁴⁶ Frederick R Bieber and David L Faigman, ‘The Illusion of Scientific Certainty: Expert Opinion and the Probative Value of Firearm Ballistics Evidence’ (2017) 22(3) Journal of Law and Policy 17, 31.

⁴⁷ Sandra Wachter, Brent Mittelstadt and Chris Russell, ‘Why Fairness Cannot Be Automated: Bridging the Gap

Expert testimony was an important mediator. Courts often insist that a qualified human has input into the AI results either interpreting them or asserting endorsement, such that there is an actual person now liable and subject to cross-examination rather than just a machine. This means that the propensity to admit evidence generated by an AI tool often depends not only on the system itself but also on the expertise and credibility of the individual presenting it.⁴⁸

E. Comparative Responses of Courts
Judicial acceptance of the forensic application of AI/ML tools is slowly adapting across jurisdictions, although to different degrees. Compared to the courts in United States, courts are generally more accepting of innovative scientific methods assuming that they satisfy the Daubert test. In some cases, experts have admitted traces in AI as firearm evidence, but with much caution and examination by the human hand. UK Courts give primacy to scientific reliability and the eligibility of experts. They are loath to accept black-box systems, but see a role for technology in the service of justice.

As of now, Indian courts are still in an initial stage when it comes to dealing with AI, however, in high-profile or complex criminal cases, courts in India are becoming more receptive to digital and forensic technologies. However, they will probably insist on procedural transparency, human oversight, and judicial review before providing allowing evidence of AI firearms.

ETHICAL AND REGULATORY CONSIDERATIONS

The introduction of “Artificial Intelligence (AI) and Machine Learning (ML)” tools in the field of firearm evidence analysis can raise ethical and regulatory issues, mainly by creating problems associated with bias, transparency, accountability, and governance. Although AI technologies have the potential to provide accurate and efficient results, the increasingly rapid application of such technologies in the criminal justice context necessitates caution

regarding unintended harms caused by the deployment of such technologies and the need to balance delivery of justice with accuracy, efficiency, and maintain the legitimate expectation of equity before law.

A. Bias in AI Models

In forensic ballistics, AI models can reflect and amplify the biases present in the datasets on which they are trained. As a result, if the training data covers some communities or types of weapons more than others the model could return discriminatory results, false positives or biased probabilities of matching. Such bias can amplify systemic bias in policing and court processes because firearm analysis is part of the evidence that informs how detectives investigate and prosecutors prosecute gun-related crimes.⁴⁹

When proprietary systems deployed by law enforcement such as NIBIN or Evofinder fail to disclose their datasets, feature selection, or validation procedures, worry is exacerbated. The implementation of algorithmic bias is not just a technical problem, but also threatens “constitutional rights: the right to a fair trial, equal treatment, and protection from arbitrary state action”.⁵⁰

B. Clarity and Liability

One of the major ethical challenges posed by AI in forensic medicine is its need to be explainable. AI/ML systems, and especially many deep learning-based systems, are “black boxes”, operating in such a way that the reasons for their decisions are completely hidden from the user and in many cases even from the developer. This raises serious questions in legal contexts: if the logic of the system is not transparent, can a defendant meaningfully contest a match as being AI-generated? How can a court admit such results as probative when it has no idea how they were obtained?⁵¹

Additionally, it is unclear who is responsible for mistakes: the software developer, the forensic analyst using it, or the state agency using it. Ethical governance calls for mechanisms that will clarify make each of these lines of responsibility so that human oversight can remain at the center of the decision-making process.⁵²

Between EU Non-Discrimination Law and AI’ (2021) 41(4) Computer Law and Security Review 105567.

⁴⁸ Thomas D Albright, ‘Why Courts Should Admit Expert Testimony on the Reliability of Eyewitness Identifications’ (2017) 20(1) Yale Journal of Law & Technology 1, 13.

⁴⁹ Latanya Sweeney, ‘Discrimination in Online Ad Delivery’ (2013) 56(5) Communications of the ACM 44.

⁵⁰ Virginia Eubanks, *Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor* (St Martin’s Press 2018).

⁵¹ Jenna Burrell, ‘How the Machine “Thinks”: Understanding Opacity in Machine Learning Algorithms’ (2016) 3(1) Big Data & Society 1.

⁵² Sandra Wachter, Brent Mittelstadt and Luciano Floridi, ‘Why a Right to Explanation of Automated Decision-

C. Dangers of Dependence on Technology

Concerns are also raising that forensic practitioners and legal stakeholders might unduly depend on AI systems, conferring on them an air of infallibility or computational authority. This phenomenon, called automation bias, can lead users to defer to machine-generated conclusions despite contradictory human observations.⁵³ That deference may stifle disagreement by experts or dampen judicial enthusiasm to scrutinize unreasonable outputs, thereby obstructing due process.

Especially with the stakes in criminal trials, judicial systems need to find the balance between at strengths of AI and the necessity of human judgment.

D. Absence of regulation and policy hurdles

Currently, many jurisdictions are still in a regulatory vacuum regarding the use of AI in forensic applications. Laws written to primarily govern investigations led by humans simply cannot account for the complications that arise with autonomous, or self-driving, systems. For example “*The Indian Evidence Act, 1872*”, does not define AI-based expert systems, nor does it ascribe to the admissibility or protective measures of a machine as a producer of a conclusion.

However, although the “*Federal Rules of Evidence (FREs)*” allow for flexibility in terms of addressing algorithmic bias, source code disclosure, and data provenance in forensic tools, they were not written with them in mind in the United States. This means that admissibility is often determined on a case-by-case basis at the discretion of a single judge, creating a patchwork approach.⁵⁴

E. Frameworks for Ethical Guidelines and Governance

To address deal with these concerns, researchers and regulatory authorities have recommended multi-faceted governance frameworks for AI in forensic science, Transparency of Algorithms: Reporting on key aspects of training data, system design, and validation metrics should be mandatory for developers. Furthermore, independent audits

should be encouraged for reliability and accountability.⁵⁵

Human-In-The-Loop Oversight: Legislation should ensure that AI-based findings cannot be interpreted and encased as expert testimony without qualification by an expert capable of testifying in court.⁵⁶ **Bias Mitigation Protocols:** agencies must enforce bias testing, diversity thresholds, and other accountability mechanisms to avoid discrimination. **Legislative Changes:** Along the lines of India, countries need to amend some existing acts, like the “*Indian Evidence Act and the Information Technology Act*”, to embrace AI-related evidence standards and procedural safeguards. **Ethical Codes of Conduct:** Professional associations in forensic science should create ethical codes governing the use of AI/ML tools that specify thresholds for accuracy, the need for disclosure of the tool, and boundaries of automated inference.⁵⁷ Transparency, fairness and accountability are clear ethical principles that guide the use of AI of firearm evidence analysis. AI may have the potential to improve the precision and efficacy of forensics, but it cannot function in a legal and ethical vacuum. To preserve justice, civil liberties, and public trust in forensic science, a clear system of human oversight and regulation is necessary.

FUTURE PROSPECTS AND CHALLENGES

Firearm evidence analysis is only the first step: and the future of AI and ML is promising. Continuous technological advancements will continue to transforming the field of forensics. However these developments also pose new implementation, regulation, and standardization challenges, that need to be addressed to make the technology useful, equitable, and legally sustainable.

A. New Applications of Forensic AI

In firearm forensics spanning the past couple of decades, the direction of research on AI systems has been trending towards predictive modeling and probabilistic reasoning rather than pure pattern recognition. Novel tools are being trained on multimodal datasets that include class activity and 3D imaging (e.g., ballistics

Making Does Not Exist in the General Data Protection Regulation’ (2017) 7(2) International Data Privacy Law 76.

⁵³ M Parasuraman and Dennis H Riley, ‘Humans and Automation: Use, Misuse, Disuse, Abuse’ (1997) 39(2) Human Factors 230.

⁵⁴ Rebecca Wexler, ‘Life, Liberty, and Trade Secrets: Intellectual Property in the Criminal Justice System’ (2018) 70(5) Stanford Law Review 1343.

⁵⁵ AI Now Institute, ‘Algorithmic Accountability Policy Toolkit’ (2018) <https://ainowinstitute.org> accessed 25 April 2025.

⁵⁶ European Commission, ‘Ethics Guidelines for Trustworthy AI’ (2019) <https://digital-strategy.ec.europa.eu>

⁵⁷ National Institute of Standards and Technology (NIST), ‘Four Principles of Explainable Artificial Intelligence’ (NISTIR 8312, 2021).

and GSR patterns), providing an evidence-based comprehensive and statistically sound solution to firearm evidence.⁵⁸ You may also like: forensic systems could potentially utilize new methods to detect previously unknown correlations in ballistics data from eyewitness-found weapons, thus providing useful leads in an investigation while minimizing human bias.⁵⁹

Refined deep learning architecture such as “convolutional neural networks (CNN)” continues to improve the resolution and reliability of automated match results for surface and striation analysis.⁶⁰

B. Real-Time Analysis and Decision Making Ability

Among them is the potential for crime-scene evidence of guns to be analyzed in real time. For example, an embedded AI model on a portable imaging device can quickly analyze bullet casings or firearms at the scene, rather than waiting for evidence to be tested in a laboratory, thereby speeding up criminal investigations. Real-time systems can also notify law enforcement of possible connections to past events in real-time, improving safety and effectiveness.⁶¹

However, until validation exceeds reasonable scientific practice thresholds, rapid analysis tools outputs cannot be brought into courts as evidence.

C. The Interfacing of National and Global Criminal Record Systems

We are likely to see AI systems become more integrated within criminal databases, like “NIBIN (National Integrated Ballistic Information Network), Europol’s Ballistics Intelligence Platforms and INTERPOL’s iARMS going forward”.⁶² Patterns of firearm trafficking, serial offending or cross-border crime, which were not previously feasible through manual processes, could be detectable through automated cross-jurisdictional comparisons.

⁵⁸ B Song and others, ‘3D Surface Topography for Firearm Forensics: Systematic Comparison of Feature Extraction Methods’ (2019) 40(2) *Forensic Science International* 23.

⁵⁹ WJ Scheirer, ‘A Survey of Multimodal Machine Learning for Forensic Applications’ (2020) 59(3) *Pattern Recognition Letters* 48.

⁶⁰ H Chen and others, ‘Deep Learning for the Identification of Tool Marks in Firearm Forensics’ (2021) 132(4) *Forensic Science International* 110049.

⁶¹ E Grigoras and others, ‘On-Scene Crime Scene Processing Using AI-Based Portable Systems’ (2022) 45(5) *Science and Justice* 399.

⁶² Europol, ‘Ballistics Intelligence Platform: Connecting Ballistic Data Across Europe’ (2021) <https://www.europol.europa.eu>

To achieve this integration, international data formats, metadata tagging, and information-sharing protocols should be standardized to provide interoperability and appropriate levels of data security.

D. Interdisciplinary cooperation

The ongoing development of forensic AI should mirror the international collaboration required by technologists, forensic scientists, legal experts, ethicists, and policymakers. With a thirst for competition, such technology development can easily outrun the entire legal and judicial system to make use of a meaningful evaluation as well as regulations.⁶³ Establish collaborative frameworks to define objectives of technical standards, ethical norms and judicial guarantees that will guide innovation in accordance with the basic principles of justice. Despite the technological optimism there are many barriers, including - Trainings and Capacity Building training forensic experts, law officials and judges on how to accurately and effectively wield and interpret AI outputs is of utmost importance.⁶⁴ Absence of Standardization the absence of standardized testing protocols and performance metrics can erode confidence in forensic AI results. While certain international authorities (i.e., ISO), as well as the “Scientific Working Group for Firearms and Toolmarks (SWGFAST)” are only starting to issue guidelines that might act as standards.⁶⁵ Legal Harmonization different jurisdictions apply different rules regarding how to admit scientific evidence, especially data produced by Artificial Intelligence. Uniform evidentiary rules across states and nations will be necessary for AI to be effective in transnational investigations.⁶⁶

In short, AI may be the future in firearm evidence analysis, but its ultimate success will depend on a technical solution that will have to be accompanied by legal and ethical considerations.

⁶³ Brent Daniel Mittelstadt, ‘Principles Alone Cannot Guarantee Ethical AI’ (2019) 1(1) *Nature Machine Intelligence* 501.

⁶⁴ National Institute of Standards and Technology (NIST), ‘Forensic Science and Artificial Intelligence: Training Guidelines’ (2023) <https://www.nist.gov>

⁶⁵ Scientific Working Group for Firearms and Toolmarks (SWGFAST), ‘Interim Standard for Firearm and Toolmark Examiner Training’ (2019) <https://www.swgfast.org>

⁶⁶ United Nations Office on Drugs and Crime (UNODC), ‘Guidelines for the Harmonization of Digital Evidence Laws’ (2020) <https://www.unodc.org>

CONCLUSION AND RECOMMENDATIONS

The AI and ML implementation of firearm evidence analysis is a game changer in forensic science. As discussed in detail in this paper, AI and ML technologies— when used effectively— can provide immense improvements in accuracy, speed and objectivity over traditional manual methods. Systems such as NIBIN and Evo Finder have had significant operational impact by providing rapid links across jurisdictions between firearms and crime scenes.

Simultaneously, AI usage in forensic settings raises serious questions regarding reliability; explanatory ability, admissibility, and ethical governance. In general, courts and legal systems, in both common law and civil law jurisdictions, have been reluctant to accept AI-generated evidence, especially if the internal workings of the algorithms cannot be interpreted by human experts. Legal standards such as the Daubert test and principles enshrined in Indian Evidence Act highlight the necessity of demonstrable reliability, verifiability and relevance for scientific evidence to pass muster.

A. The Need for Tech / Human Point of Balance

A key lesson from the present deployments is the need for AI to support, rather than replace, human expertise in forensic science. We should be looking at automated matching systems as decision support to help determine the next direction in an investigation and, therefore, direction for forensic scientists to take, rather than as black and white indicators as to an individual person or objects guilt or otherwise. The interpretation of AI outputs should always be the prerogative of human experts, and when findings are. Consequently, forensic professionals need to acquire the necessary training not only in the use of the AI systems, but also in their limitations and risk of bias.

B. Appropriate Legal and Ethical Frameworks

The existing regulations have failed to keep pace with technological progress. This article evaluates how the regulatory absence relating to the validation, standardization and regulation of AI applications in forensic science manifests itself. There is an immediate need for well-defined and enforceable standards that outline the processes involved in the development, validation, deployment and court-challenges of AI systems.

The following recommendations are suggested for the relevant stakeholders:

For Researchers - Improve Transparency and Explainability of forensic AI Models, Focus on building mechanisms for detecting bias and ethical AI design

For Law Enforcement Agencies - Any AI tool merit-centric training for officers and forensic analysts should be mandatory, Human oversight over automated systems and keeping a record of decision making process

For Policymakers - Establish regulatory bodies that may be responsible for certifying forensic AI systems prior to their use, Create standards for the admission of AI-generated evidence that satisfies constitutional and international best practices.

While AI and ML can transform the analysis of firearm evidence, they cannot realize their potential benefits as long as we embrace innovation irresponsibly or in isolation from the law or other stakeholders instead, we should strive for a different kind of evolution that also embraces justice, fairness, and accountability as its fundamental guidelines.